	RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)				
SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018					
Date	e : 1	15/03/2018 CHEMISTRY (General)			
Tim	e :1	1 pm – 2 pm Paper : IV Full	Marks : 25		
Answer <u>any five</u> questions : [5×5]					
1.	a)	Write the structure of α – D – glucopyranose in Howarth projection formula.	[1]		
	b)	Justify or criticise : Mutarotation of D-glucose is due to spontaneous anomerisation at $C - 1$.	[2]		
	C)	Convert : D – Arabinose to D – glucose.	[2]		
2.	a)	Write short note on : Osazone formation.	[2]		
	b)	Carry out the following conversions :	$[1.5\times2]$		
		i) $D - glucose \rightarrow D - Arabinose$ ii) Phthalimide $\rightarrow glycine$			
		ny minimize , gryenie			
3.	a)	\int^{CO_2H} \int^{CO_2H}			
		CO_2H HO_2C			
		Maleic acid Fumaric acid			
		$\mathbf{p}\mathbf{k}_{a}^{1}=2\cdot0\qquad \mathbf{p}\mathbf{k}_{a}^{1}=3\cdot0$			
		$pk_a^2 = 6.5$ $pk_a^2 = 4.5$			
		Explain the above observation in terms of pk_a values.	[2]		
	b)	Prepare the following compound using Grignard reagent.	[1]		
		OH CH			
		V Ph			
	c)	Describe Gabriel's method for synthesis of \bigcirc \sim $CH_2 - NH_2$	[2]		
4.	a)	We can't prepare primary amine selectively by substitution $(S_N 2)$ reaction on alkyl halide	e. —		
		Justify.	[2]		
	b)	Prepare the following compound using Grignard reagent.	[1]		
		O Ph			
	c)	Write down the mechanism for hydrolysis of ester by $B_{1,2}$ nathway	[2]		
_	-	The down the meenanism for hydrorysis of ester by D_{AC2} pathway.	[4]		
5.	Dra sub	aw the phase diagram for CO_2 showing explicitly the melting point line, the boiling point line dimension point line triple point critical point. Also identify which state (solid/liquid/gas) is a	, the most		
	stat	ble in which regions of the plot. [1	.5+2.5+1]		

- a) Plot ΔT_b (the elevation of boiling point) of the solvent of molar mass 'M' against molality (m) of the solute for an ideal solution. [2]
 - b) In the same diagram as in (a) also plot the same for a solvent with molar mass 2M.

[2]

	c)	Show how any of the above two graphs (a) or (b) would change if the solution were real.	[1]
7.	a) b)	Define the 4 different paths involved in Carnot cycle. What is efficiency of a heat engine? [Consider a state (P_1 , V_1 , T_1), which is changed to (P_2 , V_2 , T_2). Give a schematic diagram of	[2+1]
		calculating ΔS for this change (reversible path)	[2]
8.	a)	What is the criteria for the spontaneity in terms of G? Arrive it, starting from $q - Tds < 0$ as the spontaneous process	[3]
	b)	A steam engine in a nuclear power plant operates between 800 and 330K. What is the maximum	[3]
		work that can be obtained from 1KWh of heat?	[2]

_____× __